Estimates spatial average model with (optional) random effects (GAMM /Generalized Additive Mixed Model)
estimateMap.Rd
Note regarding IndependentType = "categorical": This follows a one vs. all approach using logistic regression, which in the Bayesian case is performed using a Polya-Gamma latent variable during Gibbs-sampling (https://arxiv.org/abs/1205.0310).
Usage
estimateMap(
data,
independent,
Longitude,
Latitude,
center = c("Europe", "Pacific"),
IndependentType = "numeric",
Site = "",
independentUncertainty = "",
burnin = 500,
iter = 2000,
nChains = 1,
K = 50,
Bayes = FALSE,
CoordType = "decimal degrees",
smoothConst = 1,
penalty = 2,
splineType = 2,
outlier = FALSE,
outlierValue = 4,
outlierD = FALSE,
outlierValueD = 4,
restriction = c(-90, 90, -180, 180),
correctionPac = FALSE,
sdVar = FALSE,
thinning = 2
)
Arguments
- data
data.frame: data
- independent
character: name of independent variable
- Longitude
character: name of longitude variable
- Latitude
character: name of latitude variable
- center
(character) center to shift data to, either "Europe" or "Pacific"
- IndependentType
character: type ("numeric" or "categorical") of independent variable
- Site
character: name of site variable (optional)
- independentUncertainty
character: uncertainty of independent variable in sd (optional)
- burnin
integer: number of burn-in iterations for Bayesian model (default = 500)
- iter
integer: number of iterations for Bayesian model (default = 2000)
- nChains
integer: number of chains for Bayesian model (default = 1)
- K
integer: number of basis functions for tprs (thin plate regression spline)
- Bayes
boolean: Bayesian model TRUE/FALSE?
- CoordType
character: type of longitude/latitude coordinates. One of "decimal degrees", "degrees minutes seconds" and "degrees decimal minutes"
- smoothConst
numeric: adjust smoothing parameter (> 0) for Bayesian model (optional)
- penalty
numeric: 1 for constant extrapolation, 2 for linear extrapolation
- splineType
numeric: 1 for classical tprs, 2 for spherical spline
- outlier
boolean: model outlier removal TRUE/FALSE
- outlierValue
numeric: if outlier removal is TRUE, threshold for removals in sd
- outlierD
boolean: data outlier removal TRUE/FALSE
- outlierValueD
numeric: if outlierD removal is TRUE, threshold for removals in sd
- restriction
numeric vector: spatially restricts model data 4 entries for latitude (min/max) and longitude(min/max)
- correctionPac
boolean: correction (data augmentation) for pacific centering
- sdVar
boolean: variable standard deviation
- thinning
numeric: mcmc thinning for bayesian models
Examples
if (FALSE) {
#load data
data <- readRDS(system.file("extData", "exampleData.Rds", package = "DSSM"))
# estimate model-map
map <- estimateMap(data = data, independent = "d13C", Longitude = "longitude",
Latitude = "latitude", Site = "site")
# Plot the map
plotMap(model = map)
# Alternative: use app
shiny::runApp(paste0(system.file(package = "DSSM"),"/app"))
}