Estimates spatial kernel density model
estimateMapKernel.Rd
Estimates spatial kernel density model
Usage
estimateMapKernel(
data,
Longitude,
Latitude,
center = c("Europe", "Pacific"),
independent = NULL,
CoordType = "decimal degrees",
Weighting = NULL,
clusterMethod = NULL,
nClust = 5,
nClustRange = c(2, 10),
kMeansAlgo = "Hartigan-Wong",
trimRatio = 0.05,
restr.fact = 12,
restriction = c(-90, 90, -180, 180),
nSim = 10,
smoothness = 1,
kdeType = "1"
)
Arguments
- data
data.frame: data
- Longitude
character: name of longitude variable
- Latitude
character: name of latitude variable
- center
(character) center to shift data to, either "Europe" or "Pacific"
- independent
character: name of presence/absence variable (optional)
- CoordType
character: type of longitude/latitude coordinates. One of "decimal degrees", "degrees minutes seconds" and "degrees decimal minutes"
- Weighting
character: name of weighting variable
- clusterMethod
character: cluster method
- nClust
numeric: how many clusters
- nClustRange
numeric: range of potential mclust cluster
- kMeansAlgo
character: kmeans algorithm as in stats:kmeans
- trimRatio
numeric: proportion of observations to be trimmed by tclust
- restr.fact
numeric: clustering restriction factor
- restriction
numeric vector: spatially restricts model data 4 entries for latitude (min/max) and longitude(min/max)
- nSim
numeric: number of bootstrap samples
- smoothness
numeric: smoothness adjustment
- kdeType
character: "1" for correlated bandwidth, "2" for diagonal bandwidth, "3" for diagonal, equal long/lat bandwidth
Examples
if (FALSE) {
#load data
data <- readRDS(system.file("extData", "exampleData.Rds", package = "DSSM"))
# estimate model-map
map <- estimateMap(data = data, independent = "d13C", Longitude = "longitude",
Latitude = "latitude", Site = "site")
# Plot the map
plotMap(model = map)
# Alternative: use app
shiny::runApp(paste0(system.file(package = "DSSM"),"/app"))
}